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Research Goals and Objectives

» The overall objective of this project is to demonstrate the
feasibility of producing hydrogen from hydrocarbon based fuels
using advanced proton conducting membranes.

« The goal is to develop thin film proton conducting membranes
on porous supports, and to demonstrate hydrogen fluxes
through these thin supported membranes.
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Relevance to Current State-of-the-Art

« The major source of H, is steam reformation of natural gas.

* Membrane reactor technology will dramatically improve H,
production technology from a broad array of conventional
(natural gas, coal) and renewable (biomass) fuels.

 Membrane reactors based on ion conducting ceramics provide
the technological advance necessary to increase the efficiency
and reduce the cost of H, production.

Relevance to NASA

 Membrane reactors based on ion conducting ceramics will
provide lower cost H, for NASA.

« Based on their more compact integrated design, membrane
reactors may be applicable to space based H, production.
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Budget, Schedule and Deliverables

* Budget: $214K + $80K

« Schedule:

« QI Fabricate dense thin proton conducting membranes on porous supports
that are stable under reducing (H,) conditions.

* Q2 Scale up size of supported membrane tubes to 15 cm long.
* Q3 Incorporate steam reforming catalysts into porous membrane support.

* Q4 Demonstrate membrane reactor for conversion of hydrocarbon fuel to
pure H,

* Q5 Determine appropriate H,O/CH, for maximum stable H, production

» Deliverable: Membrane reactor for conversion of hydrocarbon
fuel to pure H,
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Oxygen-ion and proton transport membranes
combined in series and integrated with partial
oxidation, steam reforming, and water gas
shift catalysts, optimize the thermodynamics
of hydrogen production.

The oxygen-ion transport membrane
separates O, from air and reacts any of the
hydrocarbons in the feed to form CO and H,,.

The proton transport membrane separates the
H,, providing a pure H, gas stream.

*Membrane reactors for H, production from a broad array of conventional (natural gas,
coal) and renewable (biomass) fuels has tremendous commercial/civilian applications.

Compact integrated membrane reactors have many defense applications and may be
applicable to space based H, production.
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Accomplishments and Results

Developed 10 mol% Eu-doped SrCeO,; membrane supported by Ni-
SrCeQO, tubular support

Fabricated hydrogen permeation reactor
Demonstrated 5 cc/min hydrogen flux from H,/He mixture

Demonstrated membrane reactor will directly produce pure
hydrogen from internally steam reformed hydrocarbon gases (CH,)

Acheived >3 cc/min hydrogen flux from CH,/H,O mixture
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Membrane Fabrication
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Fabricated Hydrogen Permeation Reactor
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Hydrogen Flux from He/Ar/H, Mixture
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Hydrogen Flux vs. P,
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Hydrogen Flux vs. Temperature
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Hydrogen Flux from Steam Reformed CH,
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Hydrogen Flux vs. Temperature
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Issues

Membrane thermodynamic stability limited at low P,
(decomposition) and low H,O/CH, (coking)

Need effective membrane area to calculate effect of scaling up
reactor size

Future Plans

* Optimize the performance (maximize flux and membrane
stability) of the hydrogen permeation reactor in terms of:

— Window of operation (Temp. and H,O/CH, concentration)

— Membrane composition
« Quantify flux vs. membrane area by masking part of tube length

* Produce higher hydrogen fluxes by scaling up reactor size
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